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ABSTRACT: A new model for strain-rate dependence of elongational viscosity of a poly-
mer is introduced. The proposed model can capture the initial strain thickening, which is
followed by a descent in elongational viscosity as the elongation rate is further increased.
Effect of the four rheological parameters in the new model on a 4:1 entrance flow is
analyzed. It is confirmed that the entrance pressure loss and recirculating vortices in an
entrance flow grow significantly as the Trouton ratio is increased. The center-line velocity
near the abrupt contraction in a 4:1 entrance flow is found to overshoot its value for a fully
developed flow in the downstream channel, if the Trouton ratio has a local minima beyond
the Newtonian limit of the polymer.

INTRODUCTION

N CONTRAST TO low molecular weight fluids, the shear and elongational viscosi-
Ities ‘of a polymer depend upon strain rate. The strain-rate dependence of the
shear viscosity of various polymers has been extensively reported in the literature
[1]. At low values of strain rate, the shear viscosity of a polymer is constant,,
whereas at higher strain rates beyond the Newtonian limit, the shear viscosity
decreases with strain rates. Various empirical equations, such as Carreau-Yasuda
model [2,3] and Cross model [4], can accurately capture the Newtonian as well as
the shear-thinning behavior of the polymer viscosity. The strain-rate dependence
of the elongational viscosity of polymers is not as well established. Atlow elonga-
tion rates (Newtonian limit), the experimental data in the literature [1,5] show that
the elongational viscosity of polymers is constant and the Trouton ratio (7r), which
is defined as the ratio of elongational viscosity to shear viscosity, is the same as that
for Newtonian fluids. Thatis, Tr =3 for an axisymmetric flow, whereas Tr=4 fora
planar flow. Due to the inherently unsteady nature of elongational flows, direct
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measurement of elongational viscosity at high elongation rates is difficult. The
limited experimental data available in the literature shows different trends for dif-
ferent polymers. Beyond the Newtonian limit, the elongational viscosity of a poly-
mer may decrease (e.g., HDPE [6]), remain constant (e.g.,
Polyisobutylene-isoperene copolymer [7], PS [5]), may initially increase followed
by a descent (e.g., LDPE [8]). Therefore, beyond the Newtonian limit, Trouton
ratio for polymers depends upon strain rate.

Since the Trouton ratio for generalized Newtonian fluids [1] is independent of
strain rate, an elongation-dominated flow simulated by using such a formulation
often has a large discrepancy with the actual polymeric flow. A strain-rate-depend-
ent Trouton ratio can be obtained by adjusting various material parameters in a
viscoelastic model [9]. However, to accurately capture the elongational v150051ty
of a polymer, a large number of material parameters are generally required in a
viscoelastic constitutive equation. Uncertainty of the convergence of a
viscoelastic formulation makes it even less attractive for simulation of complex
polymeric flows [10-18].

To circumvent the complexities of a viscoelastic flow simulation, several
authors have attempted to develop a composite viscosity model combining the
shear and elongational viscosities in the generalized Newtonian formulation.
Since the third invariant of the strain-rate tensor (é(Vv+ VV7? )/2) is zero for a sim-
ple shear, but is (3/4 x elongation rate) for an axisymmetric elongation, equations-
depending upon the second (e;;), and third (ej;) invariants of the strain rate tensor
have been used for such a composite viscosity model [19-21]. However, this
approach cannot be extended to a planar extension or three-dimensional extension
because in a planar extension ey; = 0. To include the effect of elongational viscos-
ity in a mold filling simulation, Moller et al. [19] used an equation for viscosity
which depends upon an eigenvalue of the strain-rate tensor in the plane of a thin
shell finite element. Again, this approach cannot be extended to a three-dimen-
sional flow.

To develop a viscosity model which can be used for a planar as well as
axisymmetric flow, Schunk and Scriven [22] employed a weighted average of the
shear and elongational viscosities. In this model the shear and elongational viscos-
ities depend only upon e, but the weighting function depends upon a magnitude of
vorticity tensor which is independent of the solid body rotation. Similar approach
was reported by Souza Mendes et al. [23,24], who used a geometric mean instead
of arithmetic mean of shear and elongational viscosities.

To include the effects of elongational viscosity (1] ,) and the first normal stress
difference (N;) on the polymeric flow in planar channels, Mitsoulis et al. [25] used
the following fluid model:

T =Noey + P12, Tyy = Noyys =M€, ()
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whereT ande are components of the stress and strain-rate tensors respectively,
N, and W, are, respectively, the strain-rate-dependent shear viscosity and first nor-
mal stress difference, and 1, is the zero-shear-rate viscosity. In Equations (1)—(3),
the x direction is along the axis of the channel with y being perpendicular to the
axis. Since this approach suggested by Mitsoulis et al. is not frame invariant, it has
only a limited applicability.

More recently, Gupta [26-29] presented a frame invariant simulation of a 4:1
entrance flow using independent shear and elongational viscosities. The shear and
elongational viscosities in this approach are functions of e;; only and simulation
can be extended to a planar [29] as well as a three-dimensional flow [27]. To ana-
lyze the effect of elongational viscosity on the flow in a channel with an abrupt
contraction, Gupta [26-29] used the truncated power-law model for the shear as
~ well as elongational viscosity. In this paper a new model for strain-rate-depend-
ence of elongational viscosity is introduced. The new model can capture the vari-
ous trends in elongational viscosities for different polymers mentioned earlier in
this paper.

ELONGATIONAL VISCOSITY MODEL

For the shear viscosity of a polymer, the Carreau model [2] has been used in this
paper:

N, =Noll+ (hey)? 17~ D/2 -2

where 1 is the zero-shear-rate viscosity, A characterizes the strain rate for transi-
tion between Newtonian and power-law regions, n is the power-law index and
ey =~2¢é:¢é.Following the approach used by Gupta [26-29], in this paper the
elongational viscosity has also been represented as a function of e;;. For polymers
such as polystyrene [5] and HDPE [6], which have a constant or strain-thinning
elongational viscosity, the variation of elongational viscosity with e;; can be repre-
sented by an equation such as the Carreau model [Equation (2)]. To capture the
behavior of elongational viscosity of polymers such as LDPE [8], which exhibitan
increase in elongational viscosity beyond the Newtonian range, followed by a
power-law-type descent as the strain rate is further increased, we propose the fol-
lowing model for elongational viscosity of a polymer:

1

1+ (Aeyy ) H[H(M[ A ~
11

M. =MNo 3+8{1—

It is noted that the elongational viscosity model in Equation (3) is an
enhancement of the Carreau model [Equation (2)]. Based upon-the experimental
observations reported in the literature [1,5], at low strain rates the elongational
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viscosity of 31, where 1, is the Newtonian limit of shear viscosity, has been
enforced in Equation (3). As shown in Figure 1, the parameter A, in Equation (3)
specifies 1/e; for the transition between Newtonian and elongation-thickening
portions of the viscosity strain-rate curve, whereas & characterizes the total
increase in viscosity in the elongation-thickening portion. Parameters A, and m in
Equation (3) specify 1/e; for transition between elongation-thickening and
power-law region, and the power-law index for elongational viscosity, respec-
tively. It should be noted that for & =0, A, = A and m = n, the elongational viscosity
obtained by using Equation (3) is the same as the elongational viscosity predicted
by a generalized Newtonian formulation with Carreau model for shear viscosity,
that is, 1, = 30, '
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Figure 1. Effect of various parameters in Equation (3) on elongational viscosity. For all four
plots, the values of the elongational viscosity parameters which remain constant are: 6 = 5,
Ay = 100, h, = 10, and m = 0.5.
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EFFECT OF ELONGATIONAL VISCOSITY
PARAMETERS ON ENTRANCE FLOW

Since the flow near an abrupt contraction in a channel (entrance flow) is highly
elongation dominated, it has been extensively used in the literature to analyze the
effect of elongational viscosity on polymeric flows [7,26-29]. To maintain the
elongational flow near the abrupt contraction, if the elongational viscosity of the
fluid is high, a large pressure gradient is required near the abrupt contraction. The
extra pressure drop near the abrupt contraction, called entrance loss, is typically
expressed in terms of an equivalent length of the downstream channel:

Le :Ap_Apl_APZ _ (4)

ap,

-where Ap denotes the total pressure drop in the channel, Ap; and Ap, are, respec-
tively, the pressure drop for fully developed flow in the portions of the channel
upstream and downstream of the abrupt contraction and dp, is the magnitude of the
pressure gradient for fully developed flow in the downstream channel.

For a constant flow rate in the channel, as expected, the velocity along the center
line of the channel increases sharply near the abrupt contraction. Keeping the shear
viscosity the same, if the elongational viscosity of a fluid is increased, fluid has a
lesser tendency to elongate. Consequently, such an increase in elongational vis-
cosity results in a larger distance for the center-line velocity to reach its value for a
fully developed flow in the downstream channel and a smaller value of the cen-
ter-line velocity at the location of the abrupt contraction [28]. In contrast, near the
abrupt contraction, the experimental data in literature on entrance flow [30], some-
times shows an overshoot in the center-line velocity in comparison to its value for a
fully developed flow in the downstream channel. It is shown later in this paper that
such an overshoot in the center-line velocity is observed if for arange of strain rate,
the Trouton ratio decreases as the strain rate is increased.

Using the truncated powet-law model for shear as well as elongational viscosity,
effects of the elongational power-law index (m), strain rate for the onset of
power-law region (1/A,) and the flow rate on the velocity and pressure distribu-
tions in a 4:1 entrance flow was analyzed by Gupta [28]. Gupta found that for a
fixed shear viscosity, as the Trouton ratio is increased by increasing m, 1/A, or flow
rate, the entrance loss and recirculating vortices near the abrupt contraction grow
significantly and a larger distance is required for the center-line velocity to develop
in the downstream channel. Similar effects of m, A, and flow rate are observed if
instead of the truncated power-law model, the Carreau model is used for the shear
and elongational viscosities. The effect of the strain rate for the onset of the
elongational thickening region (1/A;) and total increase in the viscosity in the
elongational thickening region (3), which could not be analyzed with the truncated
power-law model for the two viscosities, is analyzed next in this paper. Also,
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Gupta [28] analyzed the effect of A, on entrance flow for A, < A. Effect of A, on
entrance flow for A, > A is also analyzed later in this paper. Length of the upstream
and downstream channels in the finite element mesh used are 20r and 30r, respec-
tively, where r is the radius of the downstream channel. For all the entrance flow
simulations reported in this paper, the Carreau model parameters for the shear vis-
cosity are A =10 s and n = 0.25, and the results have been normalized with respect

to T]().
Effect of ©

An increase in § increases the Trouton ratio in the strain-thickening portion of
the elongational viscosity. Even though the strain rate for the onset of elonga-
tion-thinning region and slope of the elongational viscosity curve in the power-law
region remain unchanged if A, and m are fixed, the elongational viscosity line in
the power-law region moves upward as § is increased. Therefore an increase in §
also increases the Trouton ratio in the power-law region. With the flow rate and all
other elongational viscosity parameters fixed (Y, =1s7!,A; =10s,A,=0.1 s, m =
0.5), the effect of 8 on the recirculating vortices in a 4:1 entrance flow is shown in
Figure 2. Since the power-law index for elongational viscosity is larger than that
for the shear viscosity (n = 0.25), even for 6 = 0, the Trouton ratio increases with
strain rate. Therefore, a significantly large recirculating vortex is observed for § =
0 in Figure 2. Since the flow rate for the flow distributions shown in Figure 2 is in
the elongation-thickening region of the elongational viscosity, the Trouton ratio
for the velocity distributions shown in Figure 2 increases as § is increased. There-
fore, the recirculating vortex near the abrupt contraction in Figure 2 grows signifi-
cantly as J is increased.

For the three values of 6, Figure 3 shows the velocity and pressure along the axis
of the 4:1 entrance flow. In Figure 3, z = 0 corresponds to the location of abrupt
contraction. Since the Trouton ratio increases as  is increased, a larger distance is
required for the center-line velocity to reach its fully developed value. It is also
noted that the center-line velocity in a 4:1 entrance flow simulation using the trun-
cated power-law model has a sharp kink at the location of abrupt contraction [28],
whereas the center-line velocity in Figure 3 using Carreau model and Equation (3)
for elongational viscosity has a smooth variation near the abrupt contraction. The
kink in the center-line velocity reported in [28] is probably due to an abrupt change
in slope of the viscosities at the Newtonian limit of the truncated power-law model.
The entrance pressure loss, which corresponds to the sharp drop in pressure near
the abrupt contraction in Figure 3, increases significantly as 8, and hence the
Trouton ratio is increased.

Effect of A\,

For 8 >0, an increase in A reduces the strain rate for the onset of strain-thicken-
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Figure 2. Effectof onthe recirculationina4:1abruptcontractionfor = 10,n=0.25, A; =
10s,A, =0.1s;m=0.5and ¥, =1s7".
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Figure 3. Effectof 8 onthe velocity (a) and pressure (b) along the center-line at y, = 1577 for
A=108n=025 1, =108, A, = 0.1sand m = 0.5.
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ing region of the elongational viscosity. Therefore, the Trouton ratio in the range of
strain rate where the elongational viscosity is in the strain-thickening region for
one viscosity curve, and in the Newtonian region for the other curve, the Trouton
ratio is higher for the curve with higher A . Beyond this region, A, has little effect
on Trouton ratio. For two different values of A; (10 and 100 s), with all the other
viscosity parameters being the same (6 = 10, A, = 10 s, m = 0.5), and the flow rate
being such that strain rate in the 4:1 entrance flow is in the region where the
Trouton ratio is different for two cases (¥, = 0.01 s71), Figure 4 shows the veloc-
ity and pressure along the axis of symmetry of the 4:1 entrance flow. For the case
- with a larger Trouton ratio (A; = 100 s) in Figure 4, a larger distance is required for
the center-line velocity to reach its fully developed value and the entrance loss is
larger. It was also confirmed that the recirculating vortex is bigger forA; = 100 s. It
should be noted that for most polymer processing applications the strain rate is
expected to be in the power-law region, therefore A, will have only a limited effect
on the flow; however, an accurate value of § is important because & affects the
elongational viscosity in the elongation-thickening as well as in the power-law
region.

Effect of \,

Effect of A, on entrance flow was analyzed by Gupta [28]. It should be noted that
for the truncated power-law model the Newtonian limit for the elongational vis-
cosity is equivalent to 1/A, in Equation (2). Since the Trouton ratio in the
power-law region of elongational viscosity increases as A, is decreased, the
entrace loss and recirculating vortex grow significantly with areductionin A, and a .
larger distance is required for the center-line velocity to develop completely [28].
For all the cases analyzed by Gupta [28], A, is smaller than A. For A, < A, the cen-
ter-line velocity in the 4:1 entrance flow is always smaller than its value for a fully
developed flow in the downstream channel. If A, is greater than A, then for e
between 1/, and 1/A, the Trouton ratio decreases as the strain rate is increased. If
the Trouton ratio decreases as the strain rate is increased, the fluid along the axis of
the channel, which observes a pure elongation deformation, has a greater tendency
to elongate. Therefore, in Figure 5(a), for A, > A, the center-line velocity near the
abrupt contraction increases beyond its value for a fully developed flow in the
downstream channel. Since the local drop in the Trouton ratio increases as A, is
increased, the overshoot in the center-line velocity also increases with A,. It should
be noted that the first normal stress difference in a polymeric flow, which has not
been accounted for in the present work, may also affect the centerline velocity in
the vicinity of the abrupt construction. Finally, since the Trouton ratio decreases as
A, is increased, in Figure 5(b), the sharp drop in the pressure near the abrupt con-
traction, that is, entrance loss, decreases as A, is increased.
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