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Abstract

A finite element simulation of the flow in a channel
with an abrupt contraction is presented. Effects of shear and
elongational viscosities of a polymer on the entrance flow is
analyzed. The shear and elongational viscosities are repre-
sented by the truncated power-law model. The power-law
index for the elongational viscosity is independent of the
value of the power-law index for the shear viscosity. It is
confirmed that Trouton ratio is important in determining the
recirculating vortex and the extra pressure loss in entrance
flow.

Introduction

In contrast to low molecular weight fluids, which can
be characterized by the Newtonian constitutive equation,
polymeric fluids exhibit complex rheological behavior such
as strain-rate dependent shear viscosity, high resistance to
elongational deformation, normal stresses in shear flow and
memory of its previous configurations during a deformation
[1]. Depending upon the type of flow, to model the rheology
of polymers, different constitutive approaches have been
used in the literature. For instance in many applications
involving shear-dominated flows, such as injection mold-
ing, a generalized Newtonian constitutive equation with
shear-thinning viscosity has been successfully used [2, 3].
However, in applications involving an elongational flow,
such as extrusion dies, predictions from a generalized New-
tonian formulation can be quite different from the real poly-
meric flow. Therefore, use of a constitutive equation which
can predict shear as well as elongational viscosity is
required for an accurate simulation of such flows. To allevi-
ate the limitations of generalized Newtonian models, many
different viscoelastic constitutive equations have been pro-
posed in the literature [4]. Even though, many of the vis-
coelastic constitutive equations can qualitatively predict the
phenomena such as die swell and recirculation during a
creeping flow in a channel with abrupt contraction, the pre-
dictions from these equations are not always in good quan-
titative agreement with the corresponding experimental data
[5-11]. Finding the values of various parameters such as
relaxation time and viscosity for various modes in a vis-
coelastic constitutive equation is also difficult. Moreover,
most of the numerical schemes for simulating viscoelastic
flows fail to converge at high strain rates. Because of these
difficulties, viscoelastic  flow  simulation of polymeric flow

is rarely employed to resolve industrial problems.

In the present work, a software for simulation of axi-
symmetric polymeric flows has been developed. Besides
shear viscosity, to simulate a polymeric flow this software
requires a knowledge of strain-rate dependence of the elon-
gational viscosity of the polymer. In applications involving
significant elongational flow, this software can accurately
predict the velocity and pressure field in the flow. This
paper uses the newly developed software to analyze the
effect of elongational viscosity on the recirculating vortices
and pressure drop in an axisymmetric entrance flow.

Shear and Elongational Viscosities

For an axisymmetric flow, shear and elongational vis-
cosities are, respectively defined as follows:

(1)

(2)

where denotes various components of the stress tensor,

and are respectively, the shear and elongational vis-

cosities, with and being the corresponding strain rates.
The shear and elongational viscosities of a Newtonian fluid
are constant. For an axisymmetric flow of a Newtonian
fluid, the Trouton ratio is 3. For polymers,

shear and elongational viscosities depend upon strain rate.
At low values of strain rate, the shear and elongational vis-
cosities of a polymer are typically constant. For axisymmet-
ric flow, Trouton ratio for the zero-strain-rate shear and
elongational viscosities of a polymer is generally 3. As the
strain rate is increased beyond the Newtonian limit, shear
viscosity of a polymer decreases with increasing strain rate.
For many polymers, a similar trend is observed for elonga-
tional viscosity [12 - 14]. However, for some polymers as
the strain rate is increased beyond the Newtonian range,
elongational viscosity increases, which is followed by a
descent as the strain rate is further increased [15].

For generalized Newtonian fluids, shear viscosity is
represented as a function of the second invariant of the
strain rate tensor,

where ,  is the strain
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rate tensor and is the velocity vector. In the present work,
elongational viscosity has also been represented as a func-
tion of as defined above. It should be noted that for a

simple shear flow , whereas for an axisymmetric

elongational flow . In the literature, is gen-

erally specified as a function of and not that of . How-

ever, if and , both are specified as functions of , it

can be easily shown that irrespective of the strain rate
for axisymmetric flow of all generalized Newto-

nian fluids.

Instead of focussing on a specific polymer, the goal of
this paper is to examine the effect of elongational viscosity
on entrance flow. As shown in Fig. 1, the shear and elonga-
tional viscosities have been represented by the truncated
power-law model,

(3)

and

. (4)

The power-law indices can be different for the shear and
elongational viscosities. Elongational viscosity data for
many polymers [12 - 14] can be accurately represented by a
truncated power-law model. However, the initial increase in
elongational viscosity beyond the Newtonian region, which
is exhibited by some polymers [15], cannot be analyzed by
the truncated power-law model. Even though a truncated
power-law model has been used for this paper, our software
can be used with any other equation specifying the strain-
rate dependence of shear and elongational viscosities. For
m = n, the model given by Eqns. 3 and 4 is identical to a
purely viscous generalized Newtonian formulation for a
truncated power-law model with power-law index of n.

Entrance Flow

The flow near an abrupt contraction in a channel
(entrance flow) is highly extension dominated. Therefore,
entrance flow is a good benchmark test for analyzing the
effect of elongational viscosity on polymeric flows. Besides
being a good test case, entrance flow is often encountered in
polymer processing applications such as extrusion dies and
runner system of injection molding. Axisymmetric entrance
flow of polymers as well as that of Newtonian fluids has
been investigated extensively in the literature. For Newto-
nian fluids it has been established experimentally and by
numerical simulation that the main cause for a recirculating
vortex near the abrupt contraction is the fluid inertia. In
contrast, for creeping flow of polymers, it has been experi-
mentally demonstrated by many researchers that a recircu-
lating vortex is found near the abrupt contraction, which
can grow significantly with the flow rate in the channel [16-

18]. Furthermore, at certain flow rates, experiments have
shown the formation of a second vortex, called lip vortex,
near the entrant corner.

Since the flow near an abrupt contraction is highly
extension dominated, besides the pressure drop for a fully
developed flow in the upstream and downstream channels,
an additional pressure loss is encountered in the entrance
flow. Due to high elongational viscosity of polymers, this
extra pressure loss, called entrance loss, can be particularly
large for polymers. By separately calculating the pressure
drop due to shear and elongational flow near an abrupt con-
traction, Cogswell [19] developed analytical expressions
for an approximate calculation of entrance loss in a fluid
with different power-law indices for shear and elongational
viscosities. Such approximate expressions for entrance loss
have been further refined by other researchers [20 - 24]. In
references [19 - 24], power-law models have been used for
shear and elongational viscosities.

Instead of approximate calculation of entrance loss, in
the present work, the effect of shear and elongational vis-
cosities of polymeric fluids has been accurately captured in
the constitutive equation used for the flow simulation. Even
though the finite element software has been used to simu-
late a 4:1 entrance flow, the software is capable of simulat-
ing any complex axisymmetric polymeric flow.

The entrance loss is generally expressed in terms of the
equivalent length of the downstream channel,

(5)

where is the total pressure drop in the entrance flow,

and are, respectively, the pressure drop for a

fully-developed flow in the portions of the channel
upstream and downstream of the abrupt contraction, and

is the magnitude of the fully-developed axial pressure

gradient in the downstream channel. Trouton ratio for the
strain rate at the downstream wall has been used to charac-
terize the flow. The finite-element simulations presented
later in the paper show that the Trouton ratio plays an
important role in determining the recirculating vortex and
extra pressure loss in entrance flow.

Effect of Elongational Power-Law Index on
Entrance Flow

With the flow rate, Newtonian limit for the shear and
elongational viscosities, and power-law index for shear vis-

cosity fixed ( s-1, where R and U are the

radius and average velocity in the downstream channel, e0 =

0.001 s-1, n = 0.25), Fig. 2 shows the effect of elongational
power-law index (m) on recirculating vortex in an axisym-
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metric 4:1 entrance flow. For m = 0.25, which corresponds
to a purely viscous generalized Newtonian formulation for
the truncated power-law model with n = 0.25, no significant
recirculating vortex is formed near the abrupt contraction.
As the elongational power-law index is increased to m = 0.5
a small recirculating vortex is formed near the outside cor-
ner. At m = 0.55, this corner vortex grows in size and a lip
vortex is also formed near the entrant corner. A further
increase in the value of m to 0.58 results in a significant
growth of the lip vortex. The corner vortex also grows in
size, however, the vortices remain separate with two differ-
ent centers of recirculation. At m = 0.6 and beyond, the two
vortices coalesce together with a single center of recircula-
tion. At m = 0.6 the center of recirculation is close to that of
the lip vortex. As the elongational power-law index is fur-
ther increased the recirculating vortex grows significantly
and the center of recirculation moves away from the entrant

corner. For n = 0.25, e0 = 0.001 s-1 and s-1, the

entrance flow simulation converged up to m = 0.75, which
corresponds to Tr = 251 (see Table 1). Even though the
numerical simulation did not diverge, it failed to converge

for m > 0.75. For n = 0.25, e0 = 0.001 s-1, s-1 and

m > 0.75, the numerical simulation failed to converge even
for flow simulation in a tube without any contraction.
Apparently, at large values of Trouton ratio, even a small
elongational flow due to computational error in the pre-
dicted velocity field for a pure shear flow gives a large elon-
gational stresses. As the elongational stresses due to the
error in the predicted velocity field start to dominate the
shear stresses, even though the flow simulation in a tube
(with or without a contraction) does not diverge, it fails to
converge to a specific value.

For various values of elongational power-law index,
Fig. 3 shows the velocity along the axis of symmetry. For m
= 0.25, which corresponds to the truncated power-law
model for a purely viscous generalized Newtonian fluid, a
slight overshoot (0.56%) is observed in the center-line
velocity. This kink in the center-line velocity is maintained
as the elongational power-law index is increased, however
the kink occurs at a lower velocity and a longer distance is
required to reach a fully-developed velocity profile.

Normalized pressure variation along the center line for
different values of m is shown in Fig. 4. The pressure has
been normalized with respect to the shear stress at the wall
in the downstream channel. The corresponding entrance
loss is given in Fig. 5. In Fig. 4, the steep drop in pressure
near the abrupt contraction, which corresponds to the
entrance loss in Fig. 5, increases significantly with the elon-
gational power-law index. At m = 0.25, the predicted
entrance loss in terms of the equivalent length of the down-
stream channel Le is 1.42, which agrees well with the value
reported in the literature [25-28] for a purely viscous gener-
alized Newtonian formulation for power-law model with

power-law index n = 0.25. The entrance loss increases rap-
idly with m to a value of Le = 29.7 for m = 0.75.

Conclusions

A finite element software for simulating axisymmetric
flow of polymers has been developed. The shear and elon-
gational viscosities of a polymer have been represented by
the truncated power-law model with different power-law
indices for the two viscosities. For constant values of shear
viscosity parameters, the effect of power-law index for
elongational viscosity on recirculating vortex and extra
pressure loss in a 4:1 entrance flow has been analyzed. The
recirculating vortex and extra pressure loss in an entrance
flow are found to increase significantly with Trouton ratio.
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Table 1

Trouton ratio at the downstream channel wall in a 4:1 con-

traction for n = 0.25, e0 = 0.001 s-1, s-1.

Fig. 1. Truncated power-law model for shear and elonga-
tional viscosities.

(a)

(b)

(c)

(d)

m 0.25 0.35 0.45 0.55 0.65 0.75

Tr 3.0 7.3 17.6 42.7 103.6 251.0
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(e)

(f)

(g)

Fig. 2. Recirculation in 4:1 abrupt contraction for n = 0.25,

e0 = 0.001 s-1 and s-1. The elongational

power-law index, m, is (a) 0.25, (b) 0.5, (c) 0.55, (d)
0.58, (e) 0.6, (f) 0.65, (g) 0.75.

Fig. 3. Velocity along the axis of symmetry for n = 0.25, e0

= 0.001 s-1, s-1 and various values of the

elongational power-law index.

Fig. 4. Pressure along the axis of symmetry for n = 0.25, e0

= 0.001 s-1, s-1 and various values of the

elongational power-law index.

Fig. 5. Entrance loss vs. m for n = 0.25, e0 = 0.001 s-1 and

s-1.
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